Frustrated drift of an anchored scroll-wave filament and the geodesic principle.

نویسندگان

  • Marcel Wellner
  • Christian Zemlin
  • Arkady M Pertsov
چکیده

We investigate anchored scroll-wave filaments in an excitable medium whose diffusivity matrix, including its determinant, is spatially nonuniform. The study is motivated by cardiological applications where scroll-wave behavior in the presence of diffusivity gradients is believed to play an important role in the development of severe arrhythmias. A diffusivity gradient is expected to make the filament drift, unless drift is prevented ("frustrated") by anchoring to localized defects in the propagation medium. The resulting stationary filament is a geodesic curve, as demonstrated here in the case of a nonzero but constant gradient. That is, the diffusivity matrix has a determinant that varies in space, in contrast to what was assumed in earlier work. Here, we show that the filament shape results from a metric tensor of the form (det D)D{-1} , where D is the diffusivity tensor. The filament's shape is solely determined by the diffusivity tensor and is independent of the equation's reaction terms. We derive the analytic solution for the filament and determine conditions for the existence of that solution. The theory is in excellent agreement with numerical simulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eikonal formulation of the minimal principle for scroll wave filaments.

Recently, Wellner et al. [Proc. Natl. Acad. Sci. U.S.A. 99, 8015 (2002)]] proposed a principle for predicting a stable scroll wave filament shape as a geodesic in a 3D space with a metric determined by the inverse diffusivity tensor of the medium. Using the Hamilton-Jacobi theory we show that this geodesic is the shortest path for a wave propagating through the medium. This allows the use of sh...

متن کامل

Generalized minimal principle for rotor filaments.

To a reaction-diffusion medium with an inhomogeneous anisotropic diffusion tensor D, we add a fourth spatial dimension such that the determinant of the diffusion tensor is constant in four dimensions. We propose a generalized minimal principle for rotor filaments, stating that the scroll wave filament strives to minimize its surface area in the higher-dimensional space. As a consequence, statio...

متن کامل

Minimal principle for rotor filaments.

Three-dimensional rotors, or scroll waves, provide essential insight into the activity of excitable media. They also are a suspected cause in the formation and maintenance of ventricular fibrillation, whose lethality is well known. It is therefore of considerable interest to find out what configurations can be adopted by such pathologies. A scroll's behavior is embodied in its organizing center...

متن کامل

Drift of scroll waves in thin layers caused by thickness features: asymptotic theory and numerical simulations.

A scroll wave in a very thin layer of excitable medium is similar to a spiral wave, but its behavior is affected by the layer geometry. We identify the effect of sharp variations of the layer thickness, which is separate from filament tension and curvature-induced drifts described earlier. We outline a two-step asymptotic theory describing this effect, including asymptotics in the layer thickne...

متن کامل

Scroll-Wave Dynamics in Human Cardiac Tissue: Lessons from a Mathematical Model with Inhomogeneities and Fiber Architecture

Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 82 3 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2010